Automated Optical Telescope Mount

Introduction

This project involves building a basic mechanical telescope mount that can securely hold the optical telescope and allow the telescope to be moved and pointed with precision at an object of interest in the sky.
The mount should be motorised to allow the telescope to point at specific coordinates and rotate with the night sky to track an object with precision for a period.
There are many advantages of using a motorised mount rather than a manual mount. A motorised mount will be more accurate and can be calibrated, it can be set to automatically track the current object by rotating along with the apparent movement of the object across the sky, take pictures and videos of the objects at set intervals.
The mount is controlled using an Arduino Uno which drives the servo motors to point the mount at the desired coordinates.
The tracking of the mount should match the apparent movement of the sky which is 15
degrees per hour or 0.25 degrees per minute.

Testing the Accuracy of the Mount on a Whiteboard Using a Laser Pointer: Large Circle is Original Position and Smaller Points are Position of Laser After Pointing Repeatedly at the Coordinates

Testing the Accuracy of the Mount

By facing the mount towards a blank wall and attaching a laser pointer to it the exact position on the wall the mount is pointing at was known and marked. By selecting certain points that will lie on the same tracking path, i.e. points with the same declination angle, and having the mount repeatedly point at these coordinates and running the tracking sequence to see how well the mount passed through these points the accuracy was determined.
To test the accuracy on the night sky, the mount would be positioned due south and inputting coordinates for a known celestial object and determining how the position of the object differs from the direction the mount is facing. Adjustments could be made to increase the accuracy in the Arduino code. The tracking could be tested by centering the scope on a bright celestial object and seeing how well the mount follows the object over a few hours

Coordinate System

Equatorial Coordinates

The equatorial coordinate system (RA/Dec) is a projection of the latitude and longitude coordinate system onto the celestial sphere.
The latitude lines become declination (Dec) which is measured in degrees, arcminutes and arcseconds. This indicates how far north or south of the celestial equator the body is. The longitude lines become right-ascension (RA) and is measured in hours, minutes, and seconds east of where the celestial equator intersects the vernal equinox.
Equatorial coordinates are used in most modern star maps as they describe the sky as seen from the Solar System.
The advantage of equatorial coordinates is that they do not change with time and only one axis needs to be rotated to track an object once it is locked onto it, the right ascension axis.
In order for the mount to use equatorial the mount itself will have to be at an angle matching the latitude of the location on Earth, for Cork, Ireland this angle is 51.8985 degrees.

Diagram Showing How Equatorial Coordinates Work

Linear Field Width of Telescope with 10 mm Eyepiece in metres per kilometre

Close up Image of the Moon Taken With MikrOkular Camera at 1280x720 Resolution

Results and Accuracy

References

