Development and Qualification of an Equipment Module standard capturing all potential Agitator functionality

B.Sc. (Honours) in Applied Physics and Instrumentation

Department of Physical Sciences

Alan Murphy

Dr. Anthony Grant

Introduction to Project

What is an Equipment Module?

It is a container that performs different elements of procedural logic (code) to help complete a process task. For this project it will be the control of an agitator.

Agitators

Abstract

- Design an agitator equipment module that can be used for multiple functionalities. (Different vessels capacities and mixing different liquids).
- This means that the user can select the agitator type and change the parameters of the vessel to regulate the agitator speed.

Tank

Project Goal 1

- Create a formula that will allow the agitator to speed up and change its speed dependant on the level or weight of the liquid in the vessel.
- Create it in such a way that it doesn't allow the agitator to start until the vessel has reached a minimum weight/level.
- Design a User interface that will allow the operator to make these changes (i.e.. Choose the agitator type V.S.D/D.O.L, change the minimum weight/level of the vessel etc).
- V.S.D: Variable Speed Drive (changes the speed based off the Level/Weight.
- D.O.L: Direct On Line (Agitator is turned on/off at a fixed speed).

Project Goal 2

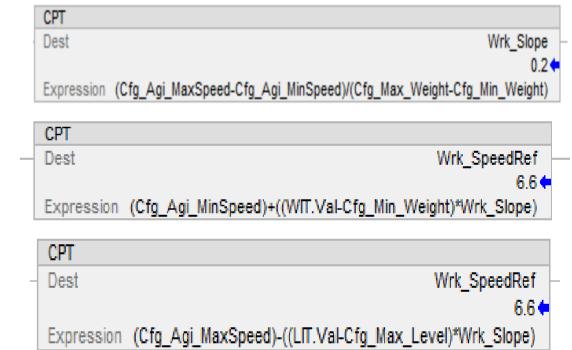
Create an Interface that can allow the user to select:

- Agitator type? V.S.D/D.O.L?
- If VSD is selected, what process parameter will be used? Level or Weight?
- What's the minimum weight/level of the vessel?
- What's the maximum weight/level of the vessel?

Apparatus and Software

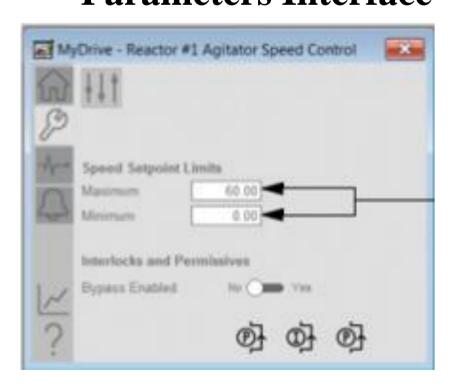
Equipment

- Allen-Bradley PLC Controller •
- FactoryTalk View Studio
- Studio5000 Logix Designer

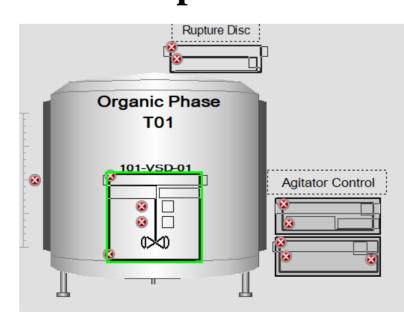

Calculations

- The calculation was based off a straight-line graph (Speed output vs Level/Weight)
- Slope Calculation: Maximum Speed Minimum Speed / Maximum Level or Weight – Minimum Level or Weight
- Ramp-up Calculation: Line equation (Speed Output) = ((Actual Weight-Minimum weight)*slope)+(Minimum Speed)
- Ramp-down Calculation:((Actual Weight-Maximum weight)*slope)-(Maximum Speed)

Agitator EM Graph


Code/Logic

- Equation implemented using the compute function
- Compute function allows the user to input formulas into a single block and produce a result


User Interface

Parameters Interface

- Example of a parameter Interface
- User can make adjustments to the agitator on an interface such as this

Tank Graphics

- Graphical interface representing a Tank and Agitator
- This interface will show the speed output of the Agitator

Final Steps

- FAT: Factory acceptance test: This a test that verifies if the equipment module meets the required design requirements
- Pre-FAT: Testing the equipment module and graphics before testing with a customer
- FAT with the customer and making required changes during the validation process
- Delivery to the customer

Size 36 Font: Heading e.g. References

Rockwell Automation Library of Process Objects: Display Elements, 4th ed. Rockwell Automation, 2022, pp. 94-313.

"Agitator Tank Mixers Agitators Chemineer Agitator PRG Ireland -", Flexachem.com, 2022. [Online]. Available: https://www.flexachem.com/mixing-technology/agitator/. [Accessed: 17- Feb- 2022]