Monitoring and Control of a Miniature Natural Gas Installation

 Image: Second system
 Image: Second system

 Image: Second system
 Ollscoil Teicneolaíochta na Mumhan

 Munster Technological University

B.Sc. (Honours) in Instrument Engineering

Department of Physical Sciences

Student Name: Eoin Buckley

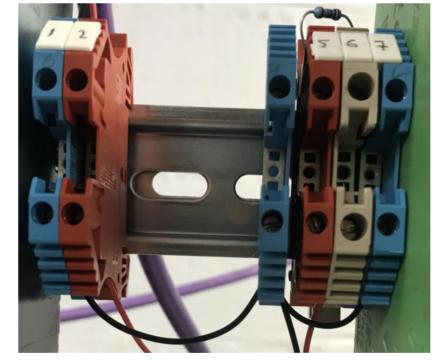
Supervisor: Aidan O'Connell

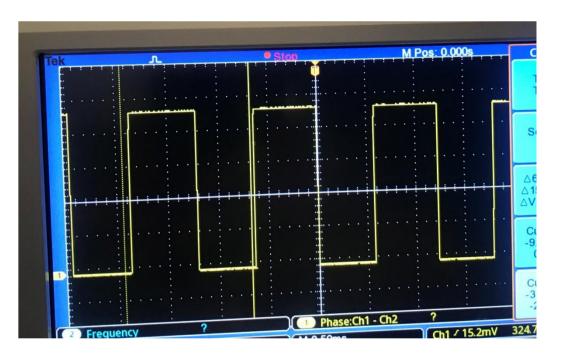
Project Overview	Construction
Project Requirements	Rig Construction
• Evaluate and Implement the appropriate instrumentation, actuators and control requirements for the rig construction	• Diagram sketch used as a blueprint for instrument positioning, with scope to alter when problems arouse
• Select and implement the optimal signal processing and communication protocol for the control system	• Construction involved structure measurements, flow-path consideration, subnet and terminal block positioning, leak elimination, wiring and commissioning
 Apply appropriate control strategies for flow and pressure control Evaluate various monitoring and control functionality options to utilise control system stability 	 Installing the PLC subnet and wiring each instrument into the appropriate analog and digital I/O's that were needed
Pressure Transducer PT FE Turbine Flowmeter Pressure RTD Pressure RTD RtD RtD Return to	

PLC Master/Slave Configuration

reserve tank

- Slave PLC subnet was physically wired with the signals that were being linked to the master PLC
- Profibus cable used to provide communication between the rig instruments and the Tia Portal network code
- Logic in the network ladder was addressed to the appropriate analog and digital I/O slots on the subnet PLC on the rig
- Device configuration table was labelled with appropriate abbreviations to clearly identify memory locations for each element of the logic code




Instrument Wiring and Commissioning

- Daisy chaining wire block connectors from the PSU to distribute power to each instrument (24V DC supply)
- Multi-meter used to test each individual instrument to ensure that they had access to power
- Use of an oscilloscope to set the range value of the pulses coming from the turbine flowmeter into the 0-10V converter for correct signal processing
- Dip switches on converter adjusted to deal with signals needed (mA V)

Challenges and Successes

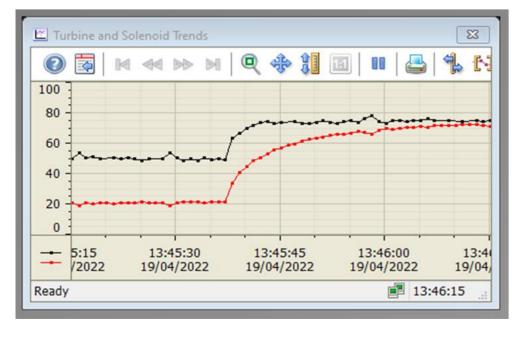
PID Control

Adjusting the proportional gain, integral time and derivative time to achieve a stable response from the system output

Gas Calculation

- Converting from normal flow to standard flow
- Taking account of temperature and pressure compensation

Successes & Challenges


Constructing an entire control system from the bare Unistrut to a Master/Slave PLC control system

Results

- Rig construct
- Signalling conversion

graphs

Graphics used to eliminate system errors and increase system efficiency

- Z compression factor set to 1, based on the guidance from IGEM handbook
- Pressure increase, V_b increases
- Temperature increase, V_b decreases

 $V_b = V_m \times \frac{P}{P_h} \times \frac{T_b}{T} \times \frac{Z_b}{Z}$

- Knowledge of wiring techniques, PLC subnet addressing, PLC configuration ,various Instrument operations and creating a WinCC SCADA interface
- Equipment lead time due to delivery
- Time Constraints of the project as a whole, trying to cohere with the project plan
- Understanding the operation of the instruments being used in the control system
- Functioning Tia Portal logic network
- An operating control system with PID control implemented
- Scada interface
- Gas calculation understanding
- Used as a training tool in the future for students

References

IGEM/GM/5 Edition 3 Communication 1730 'Electronic gas volume conversion systems' Pages 34-41

Instrument Engineers' Handbook, Volume One: Process Measurement and Analysis 4th Edition, Kindle Edition